866 research outputs found

    An Exploratory Study of Risk Perception for Data Disclosure to a Network of Firms

    Get PDF
    Research on the Privacy Calculus, which explains individuals\u27 intention to disclose personal data, mostly focuses on dyadic disclosures in which individuals disclose data to a single firm. So far, little attention has been paid to understand the characteristics of data disclosures to a network of firms. We refer to data sharing of firms in a network as Business Network Data Exchange (BNDE). We explore risk perception for data disclosures in a BNDE context based on an exploratory survey. Our results indicate that risk perception for data disclosures in the BNDE context deviates from rational risk perception theory. In particular, individuals perceive the risk to disclose data to a network of two firms as lower than the maximum risk of the separate dyadic data disclosures. These results portend the need for an adapted and nuanced view on perceived risks in this context and have important practical implications for data-sharing among firms

    Spillover effects of service failures in coalition loyalty programs:the buffering effect of special treatment benefits

    Get PDF
    Coalition loyalty programs are on the rise, yet few studies investigate the impact of service failures in such programs. Using data from a retail context, the authors show that a program partner deemed responsible for a service failure suffers negative customer responses. However, customers' perceptions of the benefits of the coalition loyalty program buffer these consequences. Perhaps most importantly, when customers perceive the program's special treatment benefits as low, direct and indirect spillover effects occur, such that a service failure by one program partner has a negative effect on customer loyalty toward the program itself

    P and S wave velocity measurements of water-rich sediments from the Nankai Trough, Japan

    Get PDF
    Acoustic velocities were measured during triaxial deformation tests of silty clay and clayey silt core samples from the Nankai subduction zone (Integrated Ocean Drilling Program Expeditions 315, 316, and 333). We provide a new data set, continuously measured during pressure increase and subsequent axial deformation. A new data processing method was developed using seismic time series analysis. Compressional wave velocities (V-p) range between about 1450 and 2200 m/s, and shear wave velocities (V-s) range between about 150 and 800 m/s. V-p slightly increases with rising effective confining pressure and effective axial stress. Samples from the accretionary prism toe show the highest Vp, while fore-arc slope sediments show lower Vp. Samples from the incoming plate, slightly richer in clay minerals, have the lowest values for V-p. V-s increases with higher effective confining pressures and effective axial stress, irrespective of composition and tectonic setting. Shear and bulk moduli are between 0.2 and 1.3 GPa, and 3.85 and 8.41 GPa, respectively. Elastic moduli of samples from the accretionary prism toe and the footwall of the megasplay fault (1.50 and 3.98 GPa) are higher than those from the hanging wall and incoming plate (0.59 and 0.88 GPa). This allows differentiation between normal and overconsolidated sediments. The data show that in a tectonosedimentary environment of only subtle compositional differences, acoustic properties can be used to differentiate between stronger (accretionary prism toe) and weaker (fore-arc slope, incoming plate) sediments. Especially V-p/V-s ratios may be instrumental in detecting zones of low effective stress and thus high pore fluid pressur

    Geotechnical behavior of mudstones from the Shimanto and Boso accretionary complexes, and implications for the Nankai accretionary prism

    Get PDF
    Triaxial shear tests on mudstone samples from the Shimanto Belt and the Boso accretionary complexes (SW Japan and central Japan) were carried out. Pre-exhumation burial depths in the two paleo-accretionary prisms were up to 9,000 m and about 1,000 m for the Shimanto and the Boso samples, respectively. Three methods were applied: (1) pressure stepping tests at increasing confining pressures between 25 and 65 MPa and pore pressures between 20 and 52 MPa; (2) constant confining pressure tests at 55 and 65 MPa, with stepwise pore pressure decrease from 80% to 50% and 25%, and from 90% to 60% and 30% of the confining pressure; and (3) a cyclic loading test on one sample from Boso (19 cycles to 70-MPa differential stress). After some contraction due to pressurization in the first cycles, the sample showed tendencies to creep rather than to fracture. Effective shear parameters show that angles of internal friction between 30° and 50° are in part quite high in both sample subsets, and ranges of cohesion are between about 2 and 6 MPa (Boso) and 13 and >30 MPa (Shimanto). The mechanical results from these paleo-accretionary prisms are taken to constrain the shear parameters of rocks in the deeper parts of the present Nankai accretionary wedge and forearc. Static friction resembles results from experiments on a wide range of phyllosilicate-quartz-feldspar gouges and shows that the forearc is composed of relatively strong rock. Cohesion increase due to diagenesis and/or very low grade metamorphism is of overriding importance and probably permits stresses of up to 18 MPa to be transmitted to the updip end of the seismogenic zone at depth and 5 to 13 MPa to the backstop of the actively deforming frontal prism

    EGFL7 loss correlates with increased VEGF-D expression, upregulating hippocampal adult neurogenesis and improving spatial learning and memory

    Get PDF
    Correction: Volume: 80 Issue: 8 DOI: 10.1007/s00018-023-04835-3 Article Number: 201 Published: AUG 2023Neural stem cells reside in the subgranular zone, a specialized neurogenic niche of the hippocampus. Throughout adulthood, these cells give rise to neurons in the dentate gyrus, playing an important role in learning and memory. Given that these core cognitive processes are disrupted in numerous disease states, understanding the underlying mechanisms of neural stem cell proliferation in the subgranular zone is of direct practical interest. Here, we report that mature neurons, neural stem cells and neural precursor cells each secrete the neurovascular protein epidermal growth factor-like protein 7 (EGFL7) to shape this hippocampal niche. We further demonstrate that EGFL7 knock-out in a Nestin-CreERT2-based mouse model produces a pronounced upregulation of neurogenesis within the subgranular zone. RNA sequencing identified that the increased expression of the cytokine VEGF-D correlates significantly with the ablation of EGFL7. We substantiate this finding with intraventricular infusion of VEGF-D upregulating neurogenesis in vivo and further show that VEGF-D knock-out produces a downregulation of neurogenesis. Finally, behavioral studies in EGFL7 knock-out mice demonstrate greater maintenance of spatial memory and improved memory consolidation in the hippocampus by modulation of pattern separation. Taken together, our findings demonstrate that both EGFL7 and VEGF-D affect neurogenesis in the adult hippocampus, with the ablation of EGFL7 upregulating neurogenesis, increasing spatial learning and memory, and correlating with increased VEGF-D expression.Peer reviewe

    Evidence against Zika virus infection of pets and peri-domestic animals in Latin America and Africa

    Get PDF
    Decades after its discovery in East Africa, Zika virus (ZIKV) emerged in Brazil in 2013 and infected millions of people during intense urban transmission. Whether vertebrates other than humans are involved in ZIKV transmission cycles remained unclear. Here, we investigate the role of different animals as ZIKV reservoirs by testing 1723 sera of pets, peri-domestic animals and African non-human primates (NHP) sampled during 2013–2018 in Brazil and 2006–2016 in Cîte d'Ivoire. Exhaustive neutralization testing substantiated co-circulation of multiple flaviviruses and failed to confirm ZIKV infection in pets or peri-domestic animals in Cîte d'Ivoire (n=259) and Brazil (n=1416). In contrast, ZIKV seroprevalence was 22.2% (2/9, 95% CI, 2.8–60.1) in West African chimpanzees (Pan troglodytes verus) and 11.1% (1/9, 95% CI, 0.3–48.3) in king colobus (Colobus polycomos). Our results indicate that while NHP may represent ZIKV reservoirs in Africa, pets or peri-domestic animals likely do not play a role in ZIKV transmission cycles.Peer Reviewe

    Measurement of the Ge 70 (n,Îł) cross section up to 300 keV at the CERN n-TOF facility

    Get PDF
    ©2019 American Physical Society.Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on Ge70, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n-TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT=5 keV to kT=100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while they are systematically smaller for neutron energies above 150 keV. We have calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60-80.Peer reviewedFinal Published versio

    A stable and replicable neural signature of lifespan adversity in the adult brain

    Get PDF
    Environmental adversities constitute potent risk factors for psychiatric disorders. Evidence suggests the brain adapts to adversity, possibly in an adversity-type and region-specific manner. However, the long-term effects of adversity on brain structure and the association of individual neurobiological heterogeneity with behavior have yet to be elucidated. Here we estimated normative models of structural brain development based on a lifespan adversity profile in a longitudinal at-risk cohort aged 25 years (n = 169). This revealed widespread morphometric changes in the brain, with partially adversity-specific features. This pattern was replicated at the age of 33 years (n = 114) and in an independent sample at 22 years (n = 115). At the individual level, greater volume contractions relative to the model were predictive of future anxiety. We show a stable neurobiological signature of adversity that persists into adulthood and emphasize the importance of considering individual-level rather than group-level predictions to explain emerging psychopathology

    Why it is time to look beyond algal genes in photosynthetic slugs

    Get PDF
    Eukaryotic organelles depend on nuclear genes to perpetuate their biochemical integrity. This is true for mitochondria in all eukaryotes and plastids in plants and algae. Then how do kleptoplasts, plastids that are sequestered by some sacoglossan sea slugs, survive in the animals' digestive gland cells in the absence of the algal nucleus encoding the vast majority of organellar proteins? For almost two decades, lateral gene transfer (LGT) from algae to slugs appeared to offer a solution, but RNA-seq analysis, later supported by genome sequencing of slug DNA, failed to find any evidence for such LGT events. Yet, isolated reports continue to be published and are readily discussed by the popular press and social media, making the data on LGT and its support for kleptoplast longevity appear controversial. However, when we take a sober look at the methods used, we realize that caution is warranted in how the results are interpreted. There is no evidence that the evolution of kleptoplasty in sea slugs involves LGT events. Based on what we know about photosystem maintenance in embryophyte plastids, we assume kleptoplasts depend on nuclear genes. However, studies have shown that some isolated algal plastids are, by nature, more robust than those of land plants. The evolution of kleptoplasty in green sea slugs involves many promising and unexplored phenomena, but there is no evidence that any of these require the expression of slug genes of algal origin
    • 

    corecore